Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Despite extensive research on piezoelectric polymers since the discovery of piezoelectric poly(vinylidene fluoride) (PVDF) in 1969, the fundamental physics of polymer piezoelectricity has remained elusive. Based on the classic principle of piezoelectricity, polymer piezoelectricity should originate from the polar crystalline phase. Surprisingly, the crystal contribution to the piezoelectric strain coefficientd31is determined to be less than 10%, primarily owing to the difficulty in changing the molecular bond lengths and bond angles. Instead, >85% contribution is from Poisson's ratio, which is closely related to the oriented amorphous fraction (OAF) in uniaxially stretched films of semicrystalline ferroelectric (FE) polymers. In this perspective, the semicrystalline structure–piezoelectric property relationship is revealed using PVDF‐based FE polymers as a model system. In melt‐processed FE polymers, the OAF is often present and links the crystalline lamellae to the isotropic amorphous fraction. Molecular dynamics simulations demonstrate that the electrostrictive conformation transformation of the OAF chains induces a polarization change upon the application of either a stress (the direct piezoelectric effect) or an electric field (the converse piezoelectric effect). Meanwhile, relaxor‐like secondary crystals in OAF (SCOAF), which are favored to grow in the extended‐chain crystal (ECC) structure, can further enhance the piezoelectricity. However, the ECC structure is difficult to achieve in PVDF homopolymers without high‐pressure crystallization. We have discovered that high‐power ultrasonication can effectively induce SCOAFin PVDF homopolymers to improve its piezoelectric performance. Finally, we envision that the electrostrictive OAF mechanism should also be applicable for other FE polymers such as odd‐numbered nylons and piezoelectric biopolymers.more » « less
- 
            null (Ed.)Abstract Piezoelectric polymers hold great potential for various electromechanical applications, but only show low performance, with | d 33 | < 30 pC/N. We prepare a highly piezoelectric polymer ( d 33 = −62 pC/N) based on a biaxially oriented poly(vinylidene fluoride) (BOPVDF, crystallinity = 0.52). After unidirectional poling, macroscopically aligned samples with pure β crystals are achieved, which show a high spontaneous polarization ( P s ) of 140 mC/m 2 . Given the theoretical limit of P s,β = 188 mC/m 2 for the neat β crystal, the high P s cannot be explained by the crystalline-amorphous two-phase model (i.e., P s,β = 270 mC/m 2 ). Instead, we deduce that a significant amount (at least 0.25) of an oriented amorphous fraction (OAF) must be present between these two phases. Experimental data suggest that the mobile OAF resulted in the negative and high d 33 for the poled BOPVDF. The plausibility of this conclusion is supported by molecular dynamics simulations.more » « less
- 
            null (Ed.)Poly(vinylidene fluoride) (PVDF) and its random copolymers exhibit the most distinctive ferroelectric properties; however, their spontaneous polarization (60–105 mC m −2 ) is still inferior to those (>200 mC m −2 ) of the ceramic counterparts. In this work, we report an unprecedented spontaneous polarization ( P s = 140 mC m −2 ) for a highly poled biaxially oriented PVDF (BOPVDF) film, which contains a pure β crystalline phase. Given the crystallinity of ∼0.52, the P s for the β phase ( P s,β ) is calculated to be 279 mC m −2 , if a simple two-phase model of semicrystalline polymers is assumed. This high P s,β is invalid, because the theoretical limit of P s,β is 185 mC m −2 , as calculated by density functional theory. To explain such a high P s for the poled BOPVDF, a third component in the amorphous phase must participate in the ferroelectric switching to contribute to the P s . Namely, an oriented amorphous fraction (OAF) links the lamellar crystal and the mobile amorphous fraction. From the hysteresis loop study, the OAF content was determined to be ∼0.28, more than 50% of the amorphous phase. Because of the high polarizability of the OAFs, the dielectric constant of the poled BOPVDF reached nearly twice the value of conventional PVDF. The fundamental knowledge obtained from this study will provide a solid foundation for the future development of PVDF-based high performance electroactive polymers for wearable electronics and soft robotic applications.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
